RISK FACTORS FOR WEANER DEER BODYWEIGHT

AUDIGÉ, L, WILSON, P R, MORRIS, R S, PFEIFFER, D U Department of Veterinary Clinical Sciences Massey University, Palmerston North

During a pilot study, an holistic epidemiological approach called "health and production profiling" (Morris, 1991) was used to explore basic health problems and production in farmed red deer The background of this research and some prelimnary results have been published in the previous proceedings (Audigé *et al.*, 1993)

This paper presents preliminary results of analysis of risk factors for deer calf bodyweight on April 1, ie at 4 months of age

MATERIALS AND METHODS

A 2-year observationnal study was conducted on 15 commercial red deer farms in The North Island of New Zealand About 2700 hinds were individually monitored for reproductive success During farm visits in September 1992 and 1993, each hind was scored for body condition The composition of calving groups from hind tag identification, calving and weaning management practices, grazing history and food allowance for each hind were recorded At weaning, calves were identified according to the calving mob they come from Weaning weights and subsequent weights recorded after April 1 enabled the estimation of individual weaner weights on April 1(W4) on each farm

Risk factors potentially affecting W4 were identified and classified according to the area of data collection they describe Codes and description of each group of variables (or variable block) are presented in Table 1 The first block includes individual deer characteristics which were recorded from the 6 farms that identified dam-offspring pairs either at birth (while ear-tagging) or before weaning Variables describing lactation and weaning management practices were grouped in block 2, while post-weaning management variables constitute the third block. In the fourth block, are two distinct groups of biological markers, one including individual calf blood characteristics, the other, mean weaner blood characteristics and mean calf faecal egg and larvae counts within farms Blocks 1-3 were analysed separately at the individual animal level (outcome variable individual W4), while weaner biological markers were investigated at the farm level with mean weaner stag and hind bodyweight (MW4) as outcome variables.

Preliminary data analyses were carried out to identify associations between single descriptive variables and individual calf weight on April 1 (W4) or mean mob or farm calf weight (MW4) depending on variables analysed Categorical variables were analysed with the T-test using SAS (SAS Institute Inc, Cary, NC, USA) Continuous variables were analysed with the Spearman correlation coeficient using Stastistica (Statsoft Inc, Tulsa, OK USA) Variables which showed sufficient evidence of an association in these analysis ($p<0\ 20$) for both stag and hind calves were included in path analyses which allow the identification of risk factors having statistically significant direct or indirect effects on weaner bodyweight (Pedhazur, 1982) Potential risk factors are sequentially ordered and hypothesised biologically sound causal relationships are indicated by arrows Each variable with arrows leading to it were regressed in multivariable linear stepwise

Risk factor			Risk factor	
Code	Unit*	Description	Code Unit*	Description
1st BLOCK	: Individ	1st BLOCK : Individual animal characteristics	2rd BLOCK (Cont'd)	
Individual dam	ı vartables	Individual dam vanables at or prior to calving	Environmental variables	
AGE3	D	Dam at least 3 years old at calving	TREES 0-3	Average paddock tree score
NZD	%	Percentage of New Zealand blood lines	SHELT	Average paddock shelter score
ADVC	D	Dam conceiving before May 1 (advanced conception)		shelter index combining scores of trees, hill, gully and shelter belt
BCSS		Post Winter body condition score recorded in September	AVMIT C	Average of minimum temperatures
		(score from 1(lean) to 5(fat))	AVMAT C	Average of maximum temperatures
WD6	kg	Post-mating live weight calculated on June 1	AVMMT C	Average of daily temperature ranges (maximum-minimum)
CHW9C	kg	Liveweight change between September and November		Daily average rainfall
Individual calf variables	variables		SUN 0-1	Average daily sunshine
BIRTHD	day	Number of days between November 1 and the date of birth	AVWIND	Paddock average wind exposure index = Average of wind strength over
NZC**	%	Estimated percentage of New Zealand blood lines		potential wind protection scores from trees, hill guily and shelter belt
WAPC**	%	Estimated percentage of Wapiti or Elk blood lines	Weaning management a	Weaning management and disease prevention management practices before April 1
2nd BLOCK	: Lactat	2nd BLOCK : Lactation and weaning management	WEAND	Number of days between January 1 and weaning
Grazing manag	rement and	Grazing management and food supplementation	YARDBW D	Calves handled in vards before weating
HMSI	E	Mean pasture sward height at start of grazing period	VCLOST D	Intection of Clostridial vaccine (5-in-1)
RSWH10	D	Residual sward height over 10 cm at end of grazing period	VYERS D	Fist dose of "Yersiniavax" vaccine before April 1
CLOVER	1-3	Pasture clover score	SIPC	Number of days between January 1 and the starting date of internal
PASTT	I-3	Average pasture type score		parasite control (first drench)
RAG	0-3	Average ragwort score	NANTH	Number of anthelmmthe treatments
THISTLE	0-3	Average thistle score		
STOCK		Number of times the mob composition was changed	3rd BLOCK : Post-w	3rd BLOCK : Post-weaning grazing management (from weaning to April 1)
SHIFT		Number of tunes deer were shifted between paddocks	Same variables as in the 3rd BLOCK plus	d BLOCK plus
		Average number of deer in the mob	ODEER D	Weaners grazing with yearling or adult deer
MJME/Ha M	MJME/Ha	Mean daily energy requirements per hectare		
M%AH	%	Mean percentage of adult hinds in the mob	4th BLOCK : Biological markers	cal markers
OTHERST	D	Paddocks shared with stock other than deer	Individual and mean call	Individual and mean calf blood biological characteristics recorded in March 1992 and 1993
STAGS	D	Paddocks shared with yearling or adult stags	White Cell Count (WCC),	White Cell Count (WCC), neutrophil percentage (NP), lymphocyte percentage (LP),
FSUP	D	Food supplementation of deer	eosinophil percentage (EO	eosinophil percentage (EOP), haemoglobin (HB), packed cell volume (PCV), total proteins (TP),
Environmental variables	l variables		albumins (ALB), phosphor	albumins (ALB), phosphorus (P), gamma glutamyl transferase (GGT), blood urea mitrogen (BUN),
FAREA	Ha	Mean grazed paddock area	copper (Cu), vitamin B12 (copper (Cu), vtamin B12 (B12), pepsinogen (PEPS), glutathione peroxidase (GHSPx)
SUR	%	Percentage of tume spent in paddocks close to road, buildings or houses	Calf faecal parasite marl	Calf faecal parasite markers recorded before the commencement of anthelmintic treatment
TOPO	1-3	Average paddock topography score	8	
			FLC Larvac/g	-
				with positive count (over 10 carves)

Table 1 : Codes and descriptions of risk factors for individual (W4) or mean mob (MW4) calf bodyweight on April 1

* D = Dichotomous variable Yes=1, No=0
** Estimated from the dam blood lines and those of the sire when single sire mating and matching dam-offspring was performed,
** Estimated from the dam blood lines and those of the sire when single sire mating and matching dam-offspring was performed,
otherwise, mean calving mob values were estimated from the mean NZD in each calving mob and the sire blood lines
If multiple sire mating was performed, the sire with the highest foreign blood lines was taken arbitrarily as mating sire
Note Analyses were carried out at the individual level (outcome variable W4) except for farm mean biological characteristics (outcome variable MW4)

-

regression analyses (Kleinbaum et al, 1982) using Stastistica (Statsoft Inc, Tulsa, OK USA) with a 5% significance limit for inclusion or removal from the model

RESULTS

Means and standard deviations of stag and hind calf W4 at each level of categorical variables significantly associated with both weaner stag and hind W4 are presented in table 2 Mean, minimum, maximum, standard deviation, spearmann correlation coefficient and significance of association of continuous variables selected for multivariable analyses are presented in table 3

As an example, the null path model of hind-offspring risk factors and the final path diagram of associations between significant risk factors and weaner stag and hind bodyweights are presented in figures 1 and 2, respectively Unstandardised path coefficients (multivariable regression coefficients) are presented on each statistically significant path in the final diagrams (p<0.05) Putative and final path models for blocks 2 and 3 will be published elsewhere Statistically significant direct effects (regression coefficients) of the most important risk factors associated with weaner weight within each block are summarised in table 4 The most important dam-offspring risk factors identified in this analysis were AGE3, BCSS, WD6, ADVC, BIRTH and CHW9C in both stag and hind calves, explaining 33% and 29% of the weaner stag and hind bodyweight variability, respectively

DISCUSSION

Weaner stag and hind post-weaning bodyweight of individual deer corrected on April 1 (W4) can be used as one indicator of farm performance Weight of individual deer ranged from 19 9 to 64 5 kg for weaner hinds and from 29 6 to 67 0 kg for weaner stags over the two years of study Weaning weight is one of the key outcomes in the deer production process that can be targeted for improvement/efficiency in breeding and venison production units This paper focuses specifically on risk factors for individual weaner bodyweight (W4), and investigates mean biological markers in relation to mean weaner bodyweight (MW4) between farms The analysis of subsequent growth rates on weaners were being analysed at the time of writting, and will be reported elsewhere

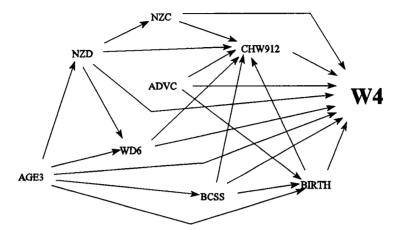
Final path diagrams in Figure 2 show results to be relatively consistent between weaner stags and hind The complex interrelationships that exist in this set of variables can be visualised on these diagrams and they can help understand the plausible biological process involved

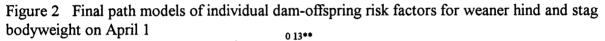
Main dam factors affecting individual weaner variables are, to some respect, consistent with pre-existing factual or anecdotal evidence For instance, adult hinds are known to raise bigger calves than yearling hinds through better milking ability Increased dam bodyweight has also been associated with heavier calves at birth, and was identified as having a positive impact on calf growth during lactation (Moore et al, 1988) Imported blood lines may produce heavier calves at birth which may be reflected through the associations between the percentage of New Zealand blood lines in the dam (NZD), her weight in June(WD6) and the change of her weight between September and calving (CHW9C) The direct positive effect of NZD on CHW9C may be because pure New Zealand origin hinds conceived earlier than other hinds in this study (Audigé et al, 1994)

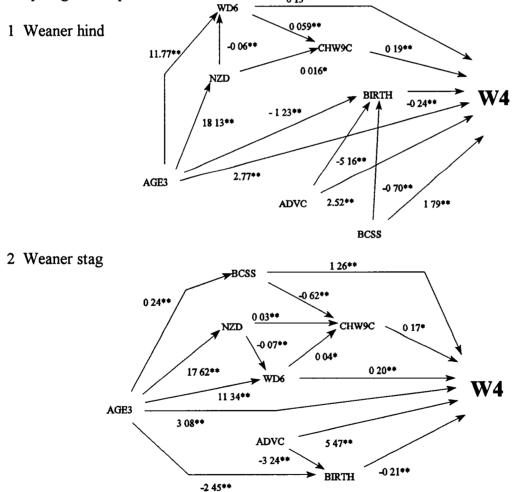
Birth date had a significant positive impact on calf post-weaning bodyweight with more than

			w	EANER HI	NDS		WEANER STAGS							
		No = 0			Yes = 1				No = 0			Yes = 1		_
Risk factor	Number			Number of deer) (SD	P value	Number of deer	Mean	SD	Number of deer	Mean	SD	P value
code*	of deer	Mean	SD	oi deer	Mean	20	P value	01 deer	vican	30	UI GEEI	IVIEAU	30	r value
1st BLOCK	Individual ani													
AGE3	90	43 08	8 512	428			0 000	85		6 00				
ADVC	54	43 23	<u> </u>	453	47 94	5 55	0 000	36	5 45 30	7 42	415	52 74	6 4 4	0.000
2nd BLOCk	Calving, lacts	tion and v	veaning mana	gement										
RSWH10	651	46 81	6 67	746	46 22	7 01	0 1 0 8	660	5214	7 78	695			
STAGS	1184	46 83	7 674	264	44 25	714	0 000	1183	51 42	7 64	263	49 51	788	0 000
YARDBW	381	45 09	9 729	1067	46 85	6 68	0 0 0 0	414	49 68	813	1032	51 63	748	0 000
VCLOST	1045	45 55	5 689	403	48 55	6 39	0 000	1066	50 44	7 94	380	52 86	6 76	0 000
VYERS	1072	45 63	3 684	376	48 57	6 56	0 000	1036	50 13	77	410	53 44	7 26	0 000
3rd BLOCK				weaming- Ap	ril 1)									
RSWH10	331	48 02		844		7 07	0 001	319	52 66	6 78	878	5152	8 0 8	0 015
ODEER	840	46.4	7 696	347	48 32	6 45	0 000	779	50 73	7 65	429	538	7 57	0 000
OTHERST	1061		9 677	126	i 47.96	7 53	0 132	982	2 51 42	8 01	226	53 55	6 32	0 000
FSUP	955	46 5		232	48 89	5 09	0 000	986	5 51 54	7 99	222	53 08	6 5 4	0 007

Table 2 Mean and standard deviation of weaner stag and hind bodyweight on April 1 for each level of dichotomous risk factors and T-test P values


• Codes are described in table i


Table 3 Mean, range, standard deviation of continuous risk factors selected for multivariable analysis of stag and hind calf bodyweight on April 1 using the Spearman correlation coefficient (p<0 20)


		STAG CALVES							HIND CALVES					
- Risk factor	Number of		-			Spearman		Number of					Spearman	
code*	deer	Mean	Min	Max	SD	Corr Coef	P value	deer	Mean	Min	Max	SD	Corr Coef	P value
1st BLOCK	Animal i	ndividual	character	istics										
W4	461	52 34	28 79	71 91	6 90			523	47 61	19 93	67 91	611		
NZC	449	70 86	6 25	100 00	24 12	0 07	0 142	511	71 85	6 40	100 00	22 78	0 07	0 099
NZD	461	85 06	12 50	100 00	23 11	0 13	0 005	521	86 35	12 50	100 00	22 17	0 20	0 000
BCSS	455	3 49	1 00	5 00	0 71	0 22	0 000	514	3 55	1 00	5 00	0 67	0 28	0 000
WD6	398	99 98	72 86	127 90	10 07	046	0 000	454	100 42	75 58	140 32	10 25	0 41	0 000
CHW9C	266	12 47	1 50	34 00	4 58	0 22	0 000	291	12 16	-2 50	30 00	466 933	0 24	0 000
BIRTHD	155	31 34	3 00	82 00	10 03	-0 48	0 000	173	31 52	16 00	60 00	4 99	-0 51	0.000
2nd BLOCK		, lactation		÷	•			1448	46 39	19 93	69 78	6 89		
W4 NZC	<u>1440</u> 1446	51 07 79 27	<u>25 67</u> 6 25	73 80	<u>7.72</u> 18.81	-0 23	0 000	1448	79 93	6 40	100 00	18 37	-0 18	0 000
WAPC	1440	2 94	0 00	25 00	7 25	0 16	0 000	1448	2 90	0 00	25 00	7 24	0 23	0 000
SHIFT	1446	4 47	1 00	18 00	4 31	0 23	0 000	1448	4 54	1 00	23 00	4 35	0 30	0 000
M%AH	1446	8186	0 00	100 00	28 93	0 21	0 000	1418	84 39	0.00	100 00	28 77	0 19	0 000
MJME/Ha	1446	549 23	16 08	1550 07	346 43	0 06	0 026	1448	570 17	16 08	1870 60	342 00	015	0 000
FAREA	1446	7 33	0 93	24 30	6 07	-0 05	0 0 4 0	1448	6 95	0 93	24 30	6 07	-0 12	0 000
PASTT	1446	1 92	1 00	3 00	0 56	-0 11	0 000	1448	1 93	1 00	3 00	0 56	-0 11	0 000
SUR	1446	26 16	0 00	100 00	35 79	0 12	0 000	1448	24 87	0 00	100 00	34 65	0 22	0 000
AVMMT	1446	12 02	7 92	15 37	1 85	-0 05	0 074	1 148	12 04	787	15 37	1 90	-0 04	0 152
RAIND	1446	315	1 63	0 01	1 20	-0 22	0 000	1448	3 22	163	0 01	1 22	-0 19	0 000
SUN WEAND	1446 1446	0 55 70 27	0 26 54 00	0 87 95 00	0 14 10 37	0 21 -0 22	0 000 0 000	1448 1448	0 55 70 30	0 26 54 00	0 87 95 00	015 1085	0 21 -0 20	0 000 0 000
SIPC	1446	67 33	27 00	95 00	14 38	-0 22	0 000	1448	67 12	27 00	93 00 95 00	15 16	-0 20	0 000
ANTH	1440	1 12	0 00	3 00	0 62	0 27	0 000	1448	1 14	0.00	3 00	0 66	0 29	0 000
3rd BLOCK						ning to April 1								
W4	1208	51 82	25 67	73 80	7 76	ing to April 1	.,	1187	47 01	19 93	69 78	6 86		
NZC	1208	77 86	0 25	100 00	19 46	-0 19	0 000	1187	78 89	6 40	100 00	19 10	-0 14	0 000
WAPC	1208	3 37	0 00	25 00	7 64	0 13	0 000	1187	3 31	0 00	25 00	7 59	.0 21	0 000
ISWH	1197	16 24	7 00	21 75	4 37	-021	0 000	1175	16 08	7 00	21 75	4 38	-0 26	0 000
CLOVER	1197	1 72	1 00	2 44	0 48	015	0 000	1175	171	1 00	2 00	0 42	0 09	0 002
MSWH	1197	13 74	6 00	18 88	3 59	-0 24	0 000	1175	13 73	6 00	18 88	3 67	-0 25	0 000
TDEER	1208	125 49	25 00	225 00	48 74	-0 28	0 000	1187	123 47	24 43	225 00	49 00	-0 34	0 000
MJME/Ha	1208 1208	592 02 37 75	86 64 5 10	1168 ۹۹ 75 35	287 73 18 85	-0 14 -0 12	0 000 0 000	1187 1187	608 02 38 98	86 64 5 10	1168 99 75 35	298 91 19 48	-0 06 -0 04	0 058 0 191
DEER/Ha FAREA	1208	472	1 03	17 44	384	-012	0 000	1187	4 60	1 03	17 44	4 02	-0 15	0 000
TOPO	1208	4 72	1 00	2 50	0 54	-0.08	0 004	1187	1 41	100	2 50	0 57	-0 15	0 000
RAG	1208	0 57	0 00	2 50	0 83	0 07	0 023	1187	0 55	0.00	2 50	0 83	0 09	0 002
SUR	1208	39 31	0 00	100 00	39 81	014	0 000	1187	36 24	0.00	100 00	38 75	0 13	0 000
TREES	1208	0 84	0 00	3 00	0 88	0 07	0 022	1187	0 82	0 00	3 00	0 88	0 09	0 002
AVWIND	1135	1 32	027	3 21	0 92	-014	0 000	1107	1 42	0 27	3 21	0 91	-0 05	0 078
AVMIT	1208	8 24	5 9 5	11 29	1 28	-014	0 000	1187	817	5 95	11 29	1 30	-0 15	0 000
AVMAT	1208	19 50	17 30	23 64	1 69	-0 05	0 109	1187	19 54	17 36	23 64	1 58	0 04	0 132
RAIND	1208	2 73	0 50	5 07	1 30	-0 22	0 000	1187	2 73	0 50	5 07	1 29	-0 24	0 000
<u>SUN</u>	1208	0 53	0.07	0 75	015	0 18	0 000	1187	0 54	0 07	0 75	015	0 21	0 000
						ps 1992 and 19	97 3)		10.00	20.74	E0 /7	< 0 0		
<u>W4</u> TP	110	51 24	34 08	66 54	<u>7 35</u> 3 82	0 31	0 001	115	<u>47 70</u> 63 17	<u>32 76</u> 52 50	<u>59 67</u> 82 90	<u>6 02</u> 4 35	0 34	0 000
ALB	110 110	63 24 35 56	50 50 22 50	72 60 43 20	3 82	0 25	0 001	115	35 76	26 30	43 40	4 33 3 43	0 24	0 0001
						(calf crops 19				20 30		545	V 23	0.001
MW4	23†	49 87	43 02	at parasito 55 53	a markers 3 53	(can crops 19	≠anu I:	22	45 82	38 35	51 81	3 75		
ALB	231	35 62	29 96	39.11	2 81	0.43	0 0 4 2	22	35 85	29.96	39 11	2 66	0 51	0 015
Farm mean							0 0 42		55 65	2	57 11			
MW4	271	50 94	41 94	59 03	4 16	- and 1774)		27	46 34	39 27	51 32	3 50		
FLC	271	285 55	3 60	1654 00	363 77	-0 29	0 1 4 6	27	285 55	3 60	1654 00	363 77	-0 46	0 016
											7			

Min = Minimum, Max = Maximum, SD = Standard deviation * Vanable descriptions are presented in table 1 * In the analysis of grazing management, estimated blood line percentages were included in all models to account for genetic variation between farms so NZC and WAPC are included in this table † Number of farms

Figure 1 An example of null hypothesis path model individual dam-offspring risk factors for weaner bodyweight on April 1

Note Risk factor codes are described in table 1 Unstandardised regression coeficients are presented on significant (*p<0.05, **p<0.01) paths

Table 4 Summary of major direct effects of risk factors for weaner stag and hind bodyweight within each block of explanatory variables

Main risk			ER STAGS				CANER HI		
factors	Units*	Regr coef **	SE	P value		Regr coef **	SE	P value	
1st BLOCK Dam-offspring individual characteristics									
Model R square					0 33				0 29
Intercept	t	24 624	3 604	0 000		29 345	3 089	0 000	
Weight of the dam (on June 1)	kg	0 203	0 033	0 000		0 125	0 028	0 000	
Conception before May 1	D	5 472	1 005	0 000		2 515	0 797	0 002	
Birth date	day	-0 210	0 047	0 000		-0 238	0 045	0 000	
Dam 3 years old at calving	D	3 076	0 763	0 000		2 769	0 675	0 000	
Dam body condition score in September	1 to 5	1 256	0 396	0 002		1 785	0 360	0 000	
Dam weight change between September and November	kg	0 165	0 077	0 033	_	0 193	0 066	0 004	
2nd BLOCK Lactation and weaning management									
Model R square	1				0 27				0 2
Intercept	t	41 360	2 428	0 000		34 715	1 701	0 000	
Estimated percentage of New Zealand Blood lines	•/•	-0 109	0 011	0 000		-0 069	0 009	0 000	
Estimated percentage of Wapiti or Elk blood lines	%	0 133	0 027	0 000		0 148	0 023	0 000	
Mean percentage of adult hind in the mob		0 074	0 007	0 000		0 062	0 006	0 000	
Average pasture type score	1-3					-1 455	0 297	0 000	
Residual sward height over 10 cm at end of grazing period	D	-1 385	0 411	0 001					
Mean grazed paddock area	Ha	0 301	0 037	0 000					
Average of daily temperature ranges (maximum-minimum)	С	1 530	0 143	0 000		0 609	0 1 1 9	0 000	
Number of days between January 1 and weaning	day	-0 193	0 027	0 000					
Calves handled in yards before wearing		3 135	0 519	0 000					
Number of anthelmintic treatments before April 1		2 341	0 422	0 000		3 349	0 318	0 000	
Weaners were injected one dose of "Yersiniavax" before April 1	D	1 590	0 415	0 000					
Average daily sunshine	0-1					7 301	1 219	0 000	
Number of times deer were shifted between paddocks						0 571	0 094	0 000	
Mean daily total energy requirements by the mob per hectare	MJME/Ha					-0 006	0.001	0 000	
3rd BLOCK Post-weaning grazing management									
Model R square	3				0 23				0 23
Intercept	t	55 892	3 185	0 000		68 873	2 089	0 000	
Estimated percentage of New Zealand Blood lines	%	-0 024	0 011	0 035		-0 027	0 010	0 006	
Estimated percentage of Wapiti or Elk blood lines	%	0 168	0 040	0 000		0 244	0 025	0 000	
Number of days between Januray 1 and wearing	day	-0 136	0 021	0 000		-0 132	0 016	0 000	
Residual sward height over 10 cm at end of grazing period	D	3 879	0 965	0 000		4 923	0 701	0 000	
Mean pasture clover score	1-3	2 407	0 707	0 001					
Mean pasture sward height at start of grazing period	cm					-0 368	0 076	0 000	
Food supplementation of deer	D					2 169	0 526	0 000	
Average number of deer in the mob		-0 072	0 010	0 000		-0 022	0 004	0 000	
Mean daily total energy requirements by the mob per hectare	MJME/Ha		0 002	0 0 1 1					
Mean grazed paddock area	Ha	1 124	0 192	0 000					
Average daily rainfall	mm	-0 985	0 234	0 000		-1 020	0 163	0 000	
Paddock average wind exposure index		1 7 1 4	0 396	0 000					
Average tree score	0-3	-3 145	0 485	0 000					
Percentage of time spent in paddocks close to road, buildings or houses	•6	0 049	0 009	0 000					
Paddocks shared with cattle, sheep or goats	D	2 329	0 896	0 009					
Weaners grazing with yearling or adult deer	D	3 095	0 947	0 001		0.616	0.140	0.000	
Average of minimum temperatures	С					-0 515	0 148	0 000	
4th BLOCK Biological markers									
Individual calf blood characteristics (calf crop 1992 and 1993)									
Model R square	;				0 11				0 10
Intercept		10 215	11 058	0 358		19 529	7 804	0 014	
Total proteins	g/l	0 649	0 175	0 000		0 446	0 123	0 000	
Farm mean calf blood and faecal parasite markers (calf crop 1992 and	1 1993)								
Model R square					0 23				0 2
Intercept	1	28 541	8 612	0 003		19 487	9 682	0 058	
Mean albumm concentration over 10 calves	g/l	0 599	0 241	0 021		0 735	0 269	0 013	
Farm mean calf blood and faecal parasite markers (calf crop 1992 and	d 1993)								
Model R square	:				0 18	1			0 2
Intercept	t	52 307	0 948	0 000		47 591	0 784	0 000	
Mean farm calf lungworm larvae index		-0 005	0 002	0 029		-0 004	0 002	0 017	

* D = Dichotomous variable (Yes=1/No=0) ** Kilogram calf bodyweight increase per unit increase of each continuous risk factor, or if dichotomous variables equal to 1, all other factors maintained constant

200 g increase bodyweight for each day earlier that the animal was born, after correcting for conception status (early or late) which produced 2 5 kg and 5 5 kg heavier weaner hinds and stags, respectively There is evidence that precalving hind body condition score be a major factor influencing weaner bodyweight. This effect may be due to various factors such as the ability of fat hinds to produce heavier calves at birth (as shown by the negative effect of BCSS on CHW9C in the stag final model), to calve earlier (as shown by the positive effect of BCSS on BIRTH in the hind final model) and to have higher milk production. The influence of hind body condition in September on birth date may actually be due to earlier conception as observed in hinds in good premating body condition (Audigé et al , 1994). Thin hinds in March were more likely to be thin in September (Unpublished data).

Final diagrams also show indirect positive effects of AGE3 as adult hinds were heavier in June, in better body condition in September, and calved earlier than yearling hinds A negative effect of AGE3 was identified through NZD as imported blood lines were more prevalent in yearling hinds than adult hinds

The analyses of grazing management during lactation, weaning and post-weaning grazing management are more difficult to interpret because there is no pre-existing evidence of association or certain biological explaination for many factors. Some factors in these blocks were chosen based on logical thought without back-up from the literature, so this discussion is only suggestive of plausible explainations. It is beleived the most important factors would be significantly associated with both stag and hind weaner weight, while the significance of the other factors identified in only one of the two models (ie stag or hind) may be marginal although informative

These analyses support the beleived beneficial effect of introducing imported blood lines or using cross-bred with wapiti type deer in producing heavy weaners. The more adult hinds in the calving mob, the heavier were the weaners, which is consistent with the previous analysis of dam characteristics. The positive effect of high temperature ranges during lactation and low daily rainfall after weaning, may actually indicate the positive influence of sunny weather patterns (providing it is not too dry for adequate pasture growth)

An approx 2-3 5 kg weaner weight increase was associated with each anthelminitic treatment administered before April 1 The effect however is likely to be confounded with that of weaning date (WEAND) which was significant in the model of post-weaning management practices. The later the weaning date, the lighter were the weaners on April 1 This warrants further evaluation of weaning practices to identify the specific effect, if any, of each of these risk factors. This study however suggests high parasite burdens (measured through faecal lungworm larvae counts before the commencement of anthelmintic treatment) may have a detrimental effect on calf performance. In this study some weaners were drenched as early as late January

Residual pasture sward height (RSWH10) should be maintained over 10 cm to produce heavy weaners as shown by the 4-5 kg increase of weaner bodyweight associated with this grazing practice Although the magnitude of effects may only be indicative, it strongly supports previous experimental evidence (Ataja et al, 1989), so this relationship is likely to be causal This is further supported by the finding that calf total protein or albumin concentrations were positively associated with weaner weights These biological markers in young ruminants can be used to monitor adequacy of nutritional intake

That large mobs of weaners were associated with low weaner weight is intriguing and needs further evaluation

In this study, blocks of explanatory variables were investigated separately because individual dam-offspring pair identifications were carried out on 6 farms only, while the analysis of post-weaning grazing management could not include farms that weaned calves on or after April 1

Estimated calf blood line percentages were included in all analyses as potential confounding factors It also enabled the identification of important factors within each block Results presented in table 4 show only estimated direct effects of significant variables on calf bodyweight More understanding of the whole production processs may arise from the analysis of final path diagrams, which will be described elsewhere

It must be remembered that path diagrams are built on the basis of current knowledge of deer production, and theoretical considerations, biologically sound, determined by research in other domestic species and field experience Statistical tests are carried out to test whether the putative theory in statistically sound, but it does not mean the theory is right. Thus it is necessary to validate these findings through more research before any conclusion on causal relationships could be formulated

However, this statistical approach is a very efficient tool to explore plausible causal pathways between a set of risk factors This approach is also a first step in building models that can be used to help predict animal performance given a set of deer or farm characteristics. For instance, using the model defined from dam-offspring individual characteristics (for which risk factors are likely to be causal), it is possible, given all reservations previously mentioned, to predict post-weaning weaner individual bodyweights on April 1 This is illustrated in table 5

Table 5	Application of modeling technique to the prediction of weaner bodyweight on April 1	
(W4) wit	th two deer conforming to a different set of characteristics	

Dam characteristics Predicted W4										
AGE3	WD6	ADVC	BCSS	CHW9C	BIRTH	Stag ca	lf Hind calf			
Adult=1	kg	Yes=1	score	kg	day after	kg	kg			
Yearling=0		No=0	1 to 5		Nov 1					
0	86	0	2	16	50 (Dec 20)	36 8	34 9			
1	100	1	4	24	20 (Nov 20)	58 3	54 1			

ACKNOWLEDGMENTS

We thank farmers, veterinarians, and technicians involved Funding was provided by NZ Game Industry Board, Ministry of Foreign Affairs of France, Deer Branch NZVA, Massey University, Pitman Moore, Rhône Mérieux, Cyanamid, Ag-Research, CIRAD-EMVT, Allflex and Te Pari Products

REFERENCES

Ataja, A M, Wilson, P R, Purchas, R W, Hodgson, J, Barry, T N, Hay, R J M (1989) A study of early venison production from grazing red deer Proceedings of the New Zealand Society of Animal Production, No 49 25-27

Audigé, L J M, Wilson, P R, Morris, R S (1993) Deer Herd Health and production profiling the method Proceedings of a Deer Course for Veterinarians, edited by Wilson, P R, No 10 78-100

Audigé, L J M, Wilson, P R, Morris, R S (1993) Deer Herd Health and Production Profiling preliminary results Proceedings of a Deer Course for Veterinarians, edited by Wilson, P R, No 10 101-114

- Audigé, L J M, Wilson, P R, Morris, R S, Pfeiffer, D U (1994) Deer Herd Health and Production Profiling Risk factors for adult hind conception Proceedings of a Deer Course for Veterinarians, edited by Wilson, P R, No 11 (elsewhere in this proceedings)
- Kleinbaum, D G, Kupper, L L, Morgenstern, H (1982) Epidemiologic research Principles and quantitative methods Lifetime Learning Publications, New York,
- Moore, G H, Littlejohn, R P, Cowie, G M (1988) Factors affecting liveweight gain in rcd deer calves from birth to weaning New Zealand Journal of Agriculture Research, 31 279-283
- Morris, R S (1991) Information systems for animal health objectives and components Revue Scientifique et Technique de l'Office International des Epizooties, 10 (1) 13-23
- Pedhazur, E J (1982) Multiple regression in behavioural research Holt, Rinehart and Winston, 2nd edition, Fort Worth, Texas, USA,